
A Concise Introduction to Mathematical Statistics
Skickas följande arbetsdag
Hitta produkten hos våra återförsäljare som levererar utanför Sverige
- 11Preface
- 15Mathematical Statistics
- 15What is unique about the subject
- 16Very short historical overview and the development of the subject
- 16Two important results
- 17Some important areas in Mathematical Statistics
- 19Important applications and connections to other areas
- 19Philosophy
- 20Physics
- 20Chemistry
- 20Engineering Science
- 21Medicine
- 21Economy
- 22Biology
- 22Law
- 23The Nobel Prize and the Fields medal
- 27CHAPTER 1 An introductory example and overview
- 27The rolling of a dice
- 33CHAPTER 2 Set theory and introduction to probability
- 33Set theory and events
- 37Probabilities
- 43Probabilities, σ -algebras
- 50A σ -algebra as a container of information about an experi- ment
- 53Exercises
- 55CHAPTER 3 Conditional probability and independence
- 55Conditional probability
- 59Independent events
- 61Exercises
- 63CHAPTER 4 Random variables
- 66The distribution of a random variable
- 70Counting measure, length measure, and integrals with such
- 73The density of a rv
- 78The quantiles
- 80Exercises
- 83CHAPTER 5 Random vectors
- 87Counting measures and length measures on Rn and integrals with such
- 90The density of a random vector
- 93Discrete random vectors 91 Continuous random vectors
- 96Mixed discrete and continuous rv
- 98Independent rv’s
- 100Conditional distributions
- 105Exercises
- 107CHAPTER 6 Functions of random variables and of random vec- tors
- 108Functions of one random variable
- 116Functions of a random vector
- 118Maxima and minima
- 122Sums and convolutions
- 126General real valued functions of a random vector 125 Vector valued functions of random vectors
- 128Exercises
- 129CHAPTER 7 Expectation
- 130The Riemann-Stieltjes integral on R
- 138Application to probability theory
- 147The Riemann-Stieltjes integral on Rn
- 151Applications to probability theory
- 162Expectations and covariances of random vectors
- 164The expectation of positive rv’s
- 165Exercises
- 169CHAPTER 8 Conditional expectation
- 169The definition and properties of a conditional expectation
- 176Exercises
- 179CHAPTER 9 Examples of distributions
- 179The Bernoulli distribution
- 180The binomial distribution
- 183The geometric distribution
- 184The exponential distribution
- 185The discrete uniform distribution
- 186The continuous uniform distribution
- 186The Poisson distribution
- 188The Gaussian (normal) distribution
- 192The multinomial distribution
- 195The multivariate Gaussian (normal) distribution
- 199Exercises
- 201CHAPTER 10 Stochastic convergence
- 202Convergence of random variables
- 202Sure convergence
- 203Almost sure convergence
- 203Convergence in p’th mean
- 204Convergence in probabiltiy
- 206The interpretation of a probability: consequences of of the LLN
- 207Convergence in distribution
- 210The prevalence of the Gaussian distribution: consequences of the central limit theorem
- 211The prevalence of the Poisson distribution
- 213Exercises
- 215CHAPTER 11 Stochastic processes
- 215Introduction
- 215Stochastic processes
- 220The distribution of a stochastic process
- 221Three important classes of processes 221 Stationary processes
- 222Markov processes
- 223Martingales
- 224Two important processes 224 The partial sum process
- 224The empirical process
- 226Exercises
- 229CHAPTER 12 An introductory example and overview
- 230A coin toss experiment
- 235CHAPTER 13 Statistics
- 236A statistic seen as a function of the data sample
- 238A statistic seen as a function(al) of the distribution function
- 245Properties of estimators
- 245Finite-sample properties
- 249Asymptotic properties
- 252The standard error
- 253Exercises
- 257CHAPTER 14 Methods to obtain estimators
- 257The plug-in estimator
- 257The Maximum Likelihood method
- 266The Least Squares estimator
- 269Extensions and modifications
- 269The ML estimator
- 272The LS estimator
- 274Exercises
- 277CHAPTER 15 Confidence intervals
- 279Pivot functions
- 284Joint confidence intervals for several parameters
- 286Exercises
- 289CHAPTER 16 Tests
- 293The power of a test and the power function
- 295Composite null hypothesis
- 298p-values
- 301Multiple testing
- 303Exercises
- 307CHAPTER 17 Normal approximation of estimators
- 307Normal approximation of linear functionals
- 310Normal approximation of the binomial distribution
- 312Normal approximation of the Poisson distribution 311 A note on the Gaussian approximation
- 313Exercises
- 315CHAPTER 18 Applications to some common situations
- 315Data from a Gaussian distribution 315 One sample
- 318Several samples 316 Observation in pairs
- 319Binomial data 319 One sample
- 321Two samples, inference for difference in success probability
- 322Poisson data
- 324Exercises
- 327CHAPTER 19 Test-based intervals and the confidence interval method
- 327The confidence interval method
- 329Test based confidence intervals
- 331Exercises
- 333CHAPTER 20 Parametric, semi-parametric and non-parametric estimation problems
- 337CHAPTER 21 The empirical distribution function
- 21.1339Some more advanced properties of the empirical distribution function
- 343CHAPTER 22 Some nonparametric inference problems
- 343Introduction
- 345Density function estimation
- 350Regression function estimation
- 352One and k-sample tests
- 353Why a nonparametric test
- 355Estimating the survival function in survival analysis
- 359Exercises
- 363CHAPTER 23 Linear regression
- 365The least squares estimator
- 367Normal linear model
- 370The ML estimator in the Normal linear model
- 371Test for and confidence interval at a point y xO on the plane in a Normal linear model
- 372Residual analysis and model fit
- 375Testing of a model and model choice
- 376All subsets regression
- 377Stepwise forward or backward regression
- 379Prediction intervals
- 380Some further interesting regression problems
- 381Dichotomous response and logistic regression
- 382Time to an event as response variable and regression models in survival analysis
- 384Exercises
- 387CHAPTER 24 Introduction to Inference for Stochastic processes
- 387Introduction
- 389The inference problem
- 390Inference for Poisson processes 389 The definition and further properties 389 Inference for
- 391Inference for Markov chains
- 391The definition and further properties
- 394Inference for the transition probabilities
- 397Exercises
- 399APPENDIX A Some useful results from analysis
- 399Maps of sets
- 400Continuity
- 401Measurability of a rv
- 405APPENDIX B Distributions arising from the Gaussian distribution
- 413APPENDIX C The Riemann integral
- 413Integration on R
- 416Integration on Rn
- 419Bibliography
Information
Språk:
EngelskaISBN:
9789144115757Utgivningsår:
2017Artikelnummer:
39387-01Upplaga:
FörstaSidantal:
420